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ABSTRACT: Analysis of the chemical components of lignocellulosic biomass is essential to understanding its potential for
utilization. Mid-infrared spectroscopy and partial least-squares regression were used for rapid measurement of the carbohydrate
(total glycans; glucan; xylan; galactan; arabinan; mannan), ash, and extractives content of triticale and wheat straws. Calibration
models for total glycans, glucan, and extractives showed good and excellent predictive performance on the basis of slope, r2, RPD,
and R/SEP criteria. The xylanmodel showed good and acceptable predictive performance. However, the ashmodel was evaluated as
providing only approximate quantification and screening. The models for galactan, arabinan, and mannan indicated poor and
insufficient prediction for application. Most models could predict both triticale and wheat straw samples with the same degree of
accuracy. Mid-infrared spectroscopic techniques coupled with partial least-squares regression can be used for rapid prediction of
total glycans, glucan, xylan, and extractives in triticale and wheat straw samples.

KEYWORDS: carbohydrates, ash, extractives, rapid determination, Fourier transform mid infrared spectroscopy, attenuated total
reflection, partial least-squares regression, triticale, � Triticosecale, wheat, Triticum aestivum, straw, biomass

’ INTRODUCTION

Lignocellulosic biomass such as straw, corn stover, and switch-
grass has attracted interest as a renewable energy source due to
fossil fuels depletion and environmental problems. It has both
quantitative availability and economic benefits and can be
utilized for biofuel and value-added biochemical production in
biorefinery.1�3

Analysis of the chemical components of lignocellulosic bio-
mass is essential to understand its utilization potential because
lignocellulose structure and composition can be variable, de-
pending on factors such as plant species, plant tissues, production
location, harvest date, and storage time.4�6 Chemical composi-
tional data are used for calculating mass balance and process
yields and for technoeconomic analysis and the data affect
evaluations of process configuration, reactor design, and process
performance.7 Conventional wet chemical analysis is generally
based on gravimetric, colorimetric, and chromatographic tech-
niques; unfortunately, these analytical methods have drawbacks
such as being time-consuming, labor-intensive, and expensive
and, in addition, result in the production of hazardous waste.5�7

These disadvantages hinder at-line or on-line operation in a
commercial setting.5,6

Mid- and near-infrared spectroscopic techniques combined
with chemometric tools have been studied for the rapid chemical
compositional determination of lignocellulosic biomass,5,6,8�21

as well as in several other fields such as food, soil, pharmaceutical,
and biomedical applications.22�27 Infrared spectroscopy (near,
14000�4000 cm�1; mid, 4000�400 cm�1; far, 400�10 cm�1)
is based on the absorption by molecules of specific frequencies
that are characteristic of their structure based on the bond or

group that vibrates.28 These infrared techniques have the ad-
vantage of providing simple, rapid, and noninvasive measure-
ments that require minimal sample processing prior to analysis
and are also relatively inexpensive and environmentally benign.29

Chemometrics has become an essential tool for linking the
methods and their application in chemistry. The combination
of infrared spectroscopy and chemometrics provides calibration
models for specific complex-matrix analysis and classification/
discrimination tools.30

We previously reported rapid determination of lignin content
of triticale and wheat straws using Fourier transformmid-infrared
spectroscopy.31 The models developed using averaged spectra of
triticale, wheat, or both straws showed good or excellent pre-
dictive ability based on the criteria of slope, r2, RPD, and R/SEP.
The model using both straws was developed for generating a
flexible and broad-based model to predict lignin content of both
kinds of straw simultaneously. Themodel could predict the lignin
content of both straws with the same accuracy. The broad-based
model developed using mid-infrared spectroscopic techniques
showed the feasibility of rapid lignin content prediction of
triticale and wheat straw samples.

Carbohydrates, especially glucose, are resources for biofuel
and biochemical production. Ash possesses detrimental qualities
such as fouling problems in combustion for industrial applica-
tions.6 Extractives, such as wood resin or pitch, affect biomass
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quality and pulping and papermaking processes.10,32 Determina-
tion of these components of biomass is useful and necessary for
biorefinery applications. Various studies have been published on
the use of mid-infrared spectroscopy to predict carbohydrates,
ash, and extractives from woody samples17�21 as well as on the
use of near-infrared spectroscopy for herbaceous and woody
samples, including straw;5,6,8�15 however, to our knowledge, no
study has been published on the prediction of straw components
using mid-infrared spectroscopy and chemometric techniques.
Here we report the rapid measurement of carbohydrates (total
glycans; glucan; xylan; galactan; arabinan; mannan), ash, and
extractives in triticale and wheat straws using the same samples
and techniques as before:31 (1) the straw samples were collected
over two production seasons, from different cultivars, and from
different locations, with or without irrigation; (2) mid-infrared
spectroscopy coupled with an attenuated total reflectance (ATR)
accessory was used for spectrum acquisition; (3) the chemo-
metric method, partial least-squares (PLS) regression, was used
for modeling; and (4) the models were developed using different
spectral pretreatments and wavenumber regions for improve-
ment of the accuracy of the predictions. Predictive techniques
using infrared spectroscopy have been frequently developed for
one species only; however, several calibration model develop-
ments have been investigated using different biomass feedstocks
to enable broad-based modeling.6,9,11,13 The broad-based model
for lignin content we reported previously showed excellent
predictive performance.31 Therefore, all of the calibrationmodels
were developed using both triticale and wheat straw samples for
broad-based model development.

’MATERIALS AND METHODS

Plant Materials. Straw samples used here were the same as those
reported previously.31 Triticale (� Triticosecale Wittm. ex A. Camus.
cultivars AC Ultima, Pronghorn, and Tyndal) and wheat (Triticum
aestivum L. cultivars AC Andrew and Hoffman) straws were collected
from various areas across Canada: Lethbridge, Alberta; Spirit River,
Alberta; Brandon, Manitoba; Normandin, Quebec; and Charlottetown,
Prince Edward Island. The straws were harvested in 2007 (Lethbridge
only) and 2008. Part of the straw harvested in Lethbridge came from an
irrigated field. One to three straw samples were collected for each variety,
irrigation treatment, year, and location, resulting in 67 and 47 samples
for triticale and wheat straw, respectively (114 straw samples in total).
Sample Preparation. Raw samples were milled using a Retsch SM

2000 cutting mill (Retsch GmbH, Haan, Germany) with a 2 mm square
discharge screen. Milled samples were sieved using a Retsch AS 200 tap
sieve shaker (Retsch GmbH) with 20 (850 μm) and 80 (180 μm) mesh
sieves. The fraction retained on the 80mesh sieve (approximately 70% of
original sample) was subjected to wet chemical analysis. For mid-
infrared spectroscopy measurement, approximately 1 g of sample was
ball-milled for 3 min at 30 Hz, using a Mix Mill MM301 equipped with a
50 mL grinding jar and a 25 mm grinding ball (Retsch GmbH) prior to
analysis.
Wet Chemical Determination of Carbohydrates, Ash, and

Extractives. All samples were analyzed using NREL analytical proce-
ures.33�35

Extractives were removed using a conventional Soxhlet apparatus
(85 mL extraction tube; 500 mL boiling flask; heating mantle (Glas-Col,
Terre Haute, IN)) with water and ethanol for 16 h each. The reflux rate
was adjusted to provide 4�5 siphon cycles per hour for water extraction
and 6�10 siphon cycles per hour for ethanol extraction. The extractives
were evaporated at 40 �C using a rotary evaporator to remove most of
the solvent, then freeze-dried for water extractives, and dried using a

convection oven at 60 �C for ethanol extractives. The extractives were
further dried using a vacuum oven at 40 �C prior to weighing. Extractives
content was determined as the amount of water and ethanol extractives.

The extractives-free samples were hydrolyzed with a sequential acid
hydrolysis procedure utilizing 72% H2SO4 at 30 �C for 1 h and followed
by 4% H2SO4 at 121 �C for 1 h. The hydrolysate was neutralized by
adding CaCO3 and then filtered. Monosaccharides in the neutralized
filtrate were quantitatively measured with HPLC using an Agilent 1100
equipped with a refractive index detector (Agilent Technologies Inc.,
Palo Alto, CA). The HPLC analysis was carried out using a Bio-Rad
Aminex HPX-87P column (300 � 7.8 mm, Bio-Rad Laboratories,
Hercules, CA) with a Hþ/CO3

� De-Ashing Refill Cartridge guard
column (30 � 4.6 mm, Bio-Rad Laboratories, Hercules, CA) operating
at 75 �C with a Milli-Q water mobile phase at a flow rate of 0.5 mL/min.

Ash content was determined by complete combustion in a muffle
furnace (model F-A1730, Thermolyne Corp., Dubuque, IA) equipped
with a temperature controller (Furnatrol II series 413, Thermolyne
Corp.) running a temperature ramp program: ramp from room tempe-
rature to 105 �C; hold at 105 �C for 12min; ramp to 250 �C at 10 �C/min;
hold at 250 �C for 30 min; ramp to 575 �C at 20 �C/min; hold at 575 �C
for 180 min; and drop to and hold at 105 �C until removed. The
remaining residue in the crucible was taken as the ash content.
Fourier Transform Mid-infrared Measurement. All of the

Fourier transform mid-infrared spectra were measured using a Nicolet
380 spectrometer (Thermo Fisher Scientific Inc., Madison, WI) with
SMART iTR diamond attenuated total reflectance (ATR) with a 45�
incident angle generating one bounce. The spectrometer was equipped
with a deuterated triglycine sulfate (DTGS) detector scanning over the
wavenumber range of 4000�650 cm�1 at a resolution of 4 cm�1. For
each spectrum, a total of 32 repetitive scans was accumulated using
OMNIC 8.0 software (Thermo Fisher Scientific Inc.). Approximately
2�3 mg of a ball-milled sample was placed on the head of the ATR
crystal (2 mm diameter) and then, to apply the same pressure, pressed
using a pressure tower. Spectra were collected in triplicate for each
sample and then averaged to one spectrum.
Chemometric Analysis. All multivariate analyses of mid-infrared

spectra for carbohydrates, ash, and extractives contents predictions were
performed using TQ Analyst 8.0 (Thermo Fisher Scientific Inc.).

Principal component analysis (PCA) was calculated using whole
averaged triticale and wheat straw spectra without spectral treatments to
see if the spectra between the straws form the same group.

Partial least-squares (PLS) regression was used to generate calibra-
tion models. The models were developed for each straw component
using both triticale and wheat straw samples. Approximately 75% of
samples (n = 87; triticale, n = 51; wheat, n = 36) were used to develop the
calibration models, and the other 25% (n = 27; triticale, n = 16; wheat,
n = 11) were used for validation (Table 1). The sample selection for
calibration and validation was carried out randomly but to reflect the
range and mean values of the calibration and validation data determined
by the wet chemical analysis.

Spectral pretreatments were used prior to generating the calibration
models: raw spectrum, first derivative, or second derivative was used in
spectrum format; constant, standard normal variate (SNV), or multi-
plicative signal correction (MSC) was used in path length. The first- and
second-derivative spectra were smoothed using a Norris derivative filter
(segment length, 5; gap between segments, 5). The calibration models
were generated for three wavenumber regions: 4000�650 cm�1,
1800�700 cm�1, or both 3700�2700 and 1800�700 cm�1. The TQ
Analyst software was allowed to determine the optimum number of PLS
factors based on the predicted residual error sum of squared (PRESS)
value to avoid under- or overfitting of the model.

The predictive performance of the models was evaluated using
validation samples to calculate root-mean-square error of prediction
(RMSEP), coefficient of regression of predicted values against reference
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data (i.e., slope), coefficient of determination (r2), standard error of
performance (SEP), residual predictive deviation (RPD), R/SEP, and
relative error. The following equations were used:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼ 1
ðŷ� yiÞ2

n

vuuut ð1Þ

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼ 1
ðŷi � yi � biasÞ2

n� 1

vuuut ð2Þ

RPD ¼ SD
RMSEP

ð3Þ

R
SEP

¼ data range
SEP

ð4Þ

relative error ¼ RMSEP
mean

� 100 ð5Þ

yi is the actual value by wet chemical analysis for the ith sample; ŷi is the
predicted value by mid-infrared spectrum for the same sample; n is the
number of samples used in each set; SD is the standard deviation in each
set; and, data range is the difference between maximum and minimum
values in each set.

In RMSEP, the values provide the average uncertainty that can be
expected for prediction of the samples.23 In slope, values of <0.8 or >1.2,
0.8�1.2, 0.9�1.1 are assessed as less reliable, reliable, and very reliable,
respectively.27 In r2, a value between 0.66 and 0.80 indicates approximate
quantitative predictions, whereas a value between 0.81 and 0.90 indicates
good prediction. Calibration models having a value of >0.90 are
considered to be excellent.36,37 In RPD, values of <2.0 are considered
to be insufficient for application, whereas values between 2.0 and 2.5
make approximate quantitative predictions possible. For values between
2.5 and 3.0, the prediction can be classified as a good prediction and
values of >3.0 indicate excellent prediction.23,36,37 In R/SEP, values of
g4 are qualified for screening calibration, values of g10 are acceptable
for quality control, and values of g15 are very good for research
quantification.6

Statistical Analysis.Microsoft Excel 2007 was used for the F test.
A difference with p < 0.05 was considered to be significant.

’RESULTS AND DISCUSSION

Wet Chemical Analysis of Carbohydrates, Ash, Extrac-
tives. Figure 1 shows the distribution of the contents of total
glycans, glucan, xylan, galactan, arabinan, mannan, ash, and
extractives of triticale and wheat straws harvested under different
conditions as determined by wet chemical analysis. The distribu-
tions between triticale and wheat in each component were
similar. The mean values of total glycans, glucan, xylan, galactan,
arabinan, mannan, ash, and extractives of triticale straw were
60.2, 35.8, 21.1, 0.8, 2.2, 0.3, 1.6, and 15.5%, respectively. The
mean values of the wheat straw were 60.3, 35.7, 21.2, 0.8, 2.3, 0.3,
1.7, and 14.8%, as well. The extractives had the largest standard
deviations (triticale, 3.0%; wheat, 3.1%) followed by total glycans
(2.8%; 2.9%), glucan (2.4%; 2.2%), xylan (0.9%; 1.3%), and ash
(0.9%; 0.9%) in each straw.
Mid-Infrared Spectra. After the triplicate mid-infrared spec-

tral measurements, the triplicate spectra for each sample were
averaged into one spectrum. All of the averaged mid-infrared
spectra of triticale and wheat straws were similar, and there was
no distinguishable difference between the two straws in the
spectra.
PCA was carried out to justify similarity between the spectra of

the triticale samples and those of the wheat straw samples.
Figure 2 shows that the triticale and wheat straw samples were
similar in the dimensions of principal component (PC) 1 and
PC2. The PCA indicated that mid-infrared spectra between both
straw samples were not differentiable, representing 92% of total
variance. The PCA demonstrates a rationale for the development
of a broad-based model using both triticale and wheat straw
samples.
Development of the Broad-Based Models. After confirma-

tion of similarities of compositional values and mid-infrared
spectra between the triticale and wheat straw samples, we
developed the broad-based models using both straws. The
calibration models were generated after applying several spectral
pretreatments: first or second derivatives in spectrum format;
SNV or MSC in path length; and, three different wavenumber
regions. The pretreatments were applied to improve the pre-
dictive accuracy of the calibration models. All the results of the
PLS calibration models developed using different pretreatments
for the eight components are shown in Tables S1�S8 (see the
Supporting Information).
Model selection was based on the lowest RMSEP value in the

models developed using the different pretreatments. Table 2

Table 1. Content (%, w/w, Oven-Dry Basis) of Eight Components of Triticale and Wheat Straws Measured by Wet Chemical
Analysisa

calibration (n = 87) validation (n = 27) total (n = 114)

component mean SD min max mean SD min max mean SD min max

total glycans 60.24 2.79 53.88 65.58 60.20 2.92 54.32 64.84 60.23 2.81 53.88 65.58

glucan 35.89 2.17 29.96 40.33 35.45 2.58 30.40 39.43 35.79 2.27 29.96 40.33

xylan 21.11 1.03 18.93 23.78 21.26 1.20 19.24 23.63 21.15 1.07 18.93 23.78

galactan 0.79 0.12 0.59 1.15 0.82 0.13 0.60 1.13 0.80 0.12 0.59 1.15

arabinan 2.20 0.16 1.85 2.74 2.23 0.20 1.89 2.65 2.21 0.17 1.85 2.74

mannan 0.28 0.09 0.12 0.56 0.30 0.10 0.14 0.55 0.29 0.09 0.12 0.56

ash 1.62 0.86 0.49 3.95 1.78 0.94 0.52 3.68 1.66 0.88 0.49 3.95

extractives 15.12 3.00 9.53 22.98 15.44 3.20 10.51 22.19 15.20 3.04 9.53 22.98
a SD, standard deviation; min, minimum; max, maximum.
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shows pretreatment conditions, the number of PLS factors,
correlation coefficient of calibration (r), RMSEC, RMSECV,
and RMSEP of the selectedmodels for each component. Figure 3
shows the plots of predicted versus actual value of each compo-
nent in the selected models. In spectral pretreatments, the raw
spectrum in spectrum format was suitable for modeling in all of
the components; however, suitable pretreatments for path length
and wavenumber regions in selected models depended on each
component. The correlation coefficients of the models indicated
more than 0.9 except for the galactan, arabinan and mannan
models. Differences between the values of RMSECV and
RMSEP and the value of RMSEC were relatively small. The
ratios of RMSECV and RMSEP to RMSEC in all of the models
were between 1 and 2. These results indicated that the models
were well developed for each component.
Evaluation of the Broad-Based Models Using the Criteria.

Table 3 shows the performance of the selected models based on
the values of slope, coefficient of determination (r2), SEP, RPD,
R/SEP, and relative error for the validation sample.
Themodels for total glycans, glucan, and extractives had values

of 0.9�1.1 for slope, >0.90 for r2, >3 for RPD, and g15 for
R/SEP. These three models had the highest rank for all of the
criteria and were evaluated as being very reliable and excellent for
prediction. The model for xylan showed excellent performance
based on r2 and RPD and reliable and acceptable performance for
quality control based on slope and R/SEP, respectively. The
model for ash showed reliable and good prediction based on
slope and r2, respectively, but approximate quantitative predic-
tion and screening calibration based on RPD and R/SEP. The
models for galactan, arabinan, and mannan were evaluated as less
reliable or insufficient for application based on slope and RPD,
respectively, although they are qualified for screening calibration
based on R/SEP. Relative error values of total glycans, glucan,
xylan, and extractives were <5%, indicating that the models are
reliable. The other components, especially mannan and ash, had
poor relative error values.

The models for major components, total glycans, glucan, xylan,
and extractives, showed good and excellent prediction perfor-
mance. The accuracy of our models was comparable to that of
those reported previously for wood samples using mid-infrared
spectroscopy based on r2, RMSEP, and relative error values.17�21

For example, in the study by Rodrigues et al. using Eucalyptus
globulus wood sample,19 the r2 and RMSEP values for glucan
were 0.94 and 0.96, respectively. The corresponding values for
xylan were 0.93 and 0.54, respectively. In the study by Meder
et al. using Pinus radiata wood sample,17 the best RMSEP and
relative error values for total glycans were 2.36 and 3.7, respec-
tively. In addition, the accuracy of glucan and xylan models was

Figure 2. Score plot of PC1 versus PC2 of triticale and wheat straws
using FT-MIR spectra.

Figure 1. Box plot of eight components of triticale and wheat straws. The bottom and top of the box represent the 25th and 75th percentiles,
respectively; the band in the box represents the median; and the ends of whiskers represent the minimum and maximum of all the data.
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comparable to that of the model built for wheat and rice straw
samples using near-infrared spectroscopy based on slope, r2, and
RMSEP values.12,14 In the report by Lomborg et al. using wheat
straw,14 the slope, r2, and RMSEP values for glucan were 0.89,
0.87, and 0.45, respectively, and the values for xylan were
estimated as 0.94, 0.87, and 0.32, respectively. The poor pre-
dictive power of the models for minor components, galactan,
arabinan, mannan, and ash, could be possibly a function of their
low concentration and less accurate measurement using wet
chemical analysis relative to the major components.7 To obtain a
more reliable and robust model, further work should consider
increasing the sample size in the calibration and a wider range of
concentration and perhaps improving spectral pretreatments
such as wavenumber region selection optimized for each com-
ponent to remove spectral variation unrelated to sample com-
ponent. Also, improvements in the accuracy of the wet chemical
analysis, especially for theminor components, are recommended.

Figure 3. Plots of predicted versus actual value of eight component contents (%) in triticale and wheat straws: O, calibration sample; �, validation
sample; dashed line, X = Y.

Table 2. Selected PLS Calibration Models Developed Using FT-MIR Spectra of Triticale and Wheat Straws

pretreatment

component spectrum format pathlength wavenumber (cm�1) no. of PLS factors a rb RMSEC c RMSECV d RMSEP e

total glycans raw spectrum SNVf 1800�700 11 0.983 0.504 0.982 0.666

glucan raw spectrum MSCg 1800�700, 3700�2700 10 0.985 0.373 0.586 0.477

xylan raw spectrum MSC 1800�700 11 0.976 0.224 0.409 0.383

galactan raw spectrum SNV 4000�650 7 0.795 0.0697 0.0976 0.0750

arabinan raw spectrum SNV 1800�700 6 0.752 0.107 0.138 0.155

mannan raw spectrum SNV 4000�650 6 0.842 0.0488 0.0663 0.0714

ash raw spectrum SNV 1800�700 7 0.919 0.337 0.418 0.404

extractives raw spectrum MSC 1800�700, 3700�2700 10 0.983 0.540 0.812 0.591
aNumber of PLS factors used. bCorrelation coefficient of calibration. cRoot-mean-square error of calibration. dRoot-mean-square error of cross-
validation. eRoot-mean-square error of prediction. f Standard normal variate. gMultiplicative signal correction.

Table 3. Performance of Models in Predicting the Compo-
nent Contents Using Triticale and Wheat Straw Samples

component slopea r2 b RMSEP SEP c RPD d R/SEP e relative error f

total glycans 0.987 0.956 0.666 0.618 4.39 17.02 1.11

glucan 0.939 0.966 0.477 0.478 5.41 18.89 1.35

xylan 0.814 0.904 0.383 0.390 3.14 11.25 1.80

galactan 0.824 0.697 0.0750 0.0769 1.79 6.90 9.15

arabinan 0.425 0.386 0.155 0.155 1.27 4.90 6.95

mannan 0.523 0.548 0.0714 0.0704 1.46 5.82 23.80

ash 0.850 0.813 0.404 0.408 2.32 7.75 22.70

extractives 0.907 0.970 0.591 0.591 5.41 19.77 3.83
aCoefficient of regression of predicted against actual value in validation.
bCoefficient of determination of validation. c Standard error of perfor-
mance. dResidual predictive deviation. eRatio of data range (R) to SEP.
f Percentage of RMSEP to mean.
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Comparison of the Predictive Performance for Triticale
and Wheat Straw Components in the Validation Set. The
compositional values and distributions of triticale and wheat
straw were similar. In addition, there was no distinguishable
difference between the straws in the mid-infrared spectra.
Therefore, the broad-based models were developed using
both kinds of straw. Figure 4 shows the plots of predicted
versus actual value of the components of triticale and wheat
straws in the validation set. RMSEP values for each straw were
shown in each component as well. The differences of the
RMSE values in glucan, xylan, arabinan, and extractives were
small. However, the differences in total glycans, galactan,
mannan, and ash were relatively large. An F test was carried
out to compare the degrees of variability of error (difference of
predicted and actual values) between triticale and wheat straw.
The p values for all components except for galactan were
calculated to be >0.05, indicating that the degree of error was
not significantly different between triticale and wheat straw.
These results indicated that the broad-based models devel-
oped using triticale and wheat straws could be used for
prediction for both straws for almost all components.
In conclusion, the models for total glycans, glucan, and

extractives showed good and excellent predictive perfor-
mance on the basis of slope, r2, RPD, and R/SEP criteria.
The xylan model showed good and acceptable predictive
performance. However, the ash model was evaluated as
approximate for quantification and screening. The models
for galactan, arabinan, and mannan indicated poor and
insufficient prediction for application. Almost all of the
models except for galactan could predict both triticale and
wheat straw samples with the same degree of accuracy. Mid-
infrared spectroscopic techniques can be used for rapid
prediction of total glycans, glucan, xylan, and extractives of
triticale and wheat straw samples.
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